made an algos package to reorganize

This commit is contained in:
2023-08-11 19:00:48 +03:00
parent ea808b1895
commit b712db47d3
5 changed files with 130 additions and 124 deletions

View File

@@ -1,123 +0,0 @@
"""
These are implementations of different (in-application) rate limiting algorithms.
`identifier` is used as the first (usually only) argument for each implementation
because it might refer to IP address, a session ID, or perhaps an API key or token.
"""
import datetime as dt
import redis
r = redis.Redis()
class TooManyRequests(Exception):
pass
class EntryDoesntExist(Exception):
pass
MAX_CAPACITY = 8
STORE_NAME_PREFIX_LEAKING_BUCKET = "leaking_bucket:queue:tasks"
LEAKING_BUCKET_INDEX_NAME = "exporter:queue:tasks:index"
def leaking_bucket_enqueue(identifier: str, data: str) -> None:
"""
When a request arrives, the system checks if the queue for this particular
`identifier` is full. If it is not full, the request is added to the queue.
Otherwise, the request is dropped.
Requests are pulled from the queue and processed at regular intervals in
`leaking_bucket_dequeue`
"""
store_name = f"{STORE_NAME_PREFIX_LEAKING_BUCKET}:{identifier}"
if r.llen(store_name) == MAX_CAPACITY:
raise TooManyRequests
r.lpush(store_name, data)
# this is to enable iterating through all the queues in the system
r.sadd(LEAKING_BUCKET_INDEX_NAME, identifier)
RUN_LEAKING_BUCKET_TASKS_EVERY_X_SECONDS = 15
NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL = 2
def leaking_bucket_dequeue():
"""
Iterate through all leaking bucket queues and process at least one task
from each of them.
To be run on a schedule.
"""
def run_task(data):
...
for identifier_bytes in r.smembers(LEAKING_BUCKET_INDEX_NAME):
identifier = identifier_bytes.decode()
task_list = f"{STORE_NAME_PREFIX_LEAKING_BUCKET}:{identifier}"
print(
f"{dt.datetime.now().isoformat()}: dequeueing "
f"{NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL} tasks from {task_list}"
)
for _ in range(NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL):
data = r.rpop(task_list)
if data is not None:
data = data.decode()
print(f"running task with data '{data}'")
run_task(data)
else:
print("there wasn't anything there")
TOKEN_BUCKET = {}
def get_entry_from_token_bucket(identifier: str) -> dict | None:
"""
This is implemented independently in order to decouple it from its caller.
Here it is initially implemented in-memory, but for scalability we'd
want to use something more long-lived.
"""
return TOKEN_BUCKET.get(identifier)
def token_bucket_in_memory_lazy_refill(identifier: str) -> str:
"""
Tokens are put in the bucket at preset rates periodically.
Once the bucket is full, no more tokens are added.
The refiller puts NUM_TOKENS_TO_REFILL tokens into the bucket every minute.
To be explicit, there is a token bucket for every `identifier`,
aka every user/IP
"""
REFILL_EVERY_SECONDS = 15
NUM_TOKENS_TO_REFILL = 4
entry = get_entry_from_token_bucket(identifier)
if entry is None:
TOKEN_BUCKET[identifier] = {
"tokens": MAX_CAPACITY,
"last_refilled": dt.datetime.now().timestamp(),
}
else:
last_refilled = entry["last_refilled"]
now = dt.datetime.now().timestamp()
if now >= last_refilled + REFILL_EVERY_SECONDS:
num_tokens_to_refill = int(
(now - last_refilled) // REFILL_EVERY_SECONDS * NUM_TOKENS_TO_REFILL
)
entry["last_refilled"] = dt.datetime.now().timestamp()
entry["tokens"] = min(entry["tokens"] + num_tokens_to_refill, MAX_CAPACITY)
left = TOKEN_BUCKET[identifier]["tokens"]
if left == 0:
raise TooManyRequests
TOKEN_BUCKET[identifier]["tokens"] -= 1

View File

@@ -0,0 +1,8 @@
"""
These are implementations of different (in-application) rate limiting algorithms.
`identifier` is used as the first (usually only) argument for each implementation
because it might refer to IP address, a session ID, or perhaps an API key or token.
"""
from .token_bucket import token_bucket_in_memory_lazy_refill, TooManyRequests
from .leaky_bucket import leaking_bucket_dequeue, leaking_bucket_enqueue, RUN_LEAKING_BUCKET_TASKS_EVERY_X_SECONDS

View File

@@ -0,0 +1,63 @@
import datetime as dt
import redis
r = redis.Redis()
class TooManyRequests(Exception):
pass
MAX_CAPACITY = 8
STORE_NAME_PREFIX_LEAKING_BUCKET = "leaking_bucket:queue:tasks"
LEAKING_BUCKET_INDEX_NAME = "exporter:queue:tasks:index"
RUN_LEAKING_BUCKET_TASKS_EVERY_X_SECONDS = 15
NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL = 2
def leaking_bucket_enqueue(identifier: str, data: str) -> None:
"""
When a request arrives, the system checks if the queue for this particular
`identifier` is full. If it is not full, the request is added to the queue.
Otherwise, the request is dropped.
Requests are pulled from the queue and processed at regular intervals in
`leaking_bucket_dequeue`
"""
store_name = f"{STORE_NAME_PREFIX_LEAKING_BUCKET}:{identifier}"
if r.llen(store_name) == MAX_CAPACITY:
raise TooManyRequests
r.lpush(store_name, data)
# this is to enable iterating through all the queues in the system
r.sadd(LEAKING_BUCKET_INDEX_NAME, identifier)
def leaking_bucket_dequeue():
"""
Iterate through all leaking bucket queues and process at least one task
from each of them.
To be run on a schedule.
"""
def run_task(data):
...
for identifier_bytes in r.smembers(LEAKING_BUCKET_INDEX_NAME):
identifier = identifier_bytes.decode()
task_list = f"{STORE_NAME_PREFIX_LEAKING_BUCKET}:{identifier}"
print(
f"{dt.datetime.now().isoformat()}: dequeueing "
f"{NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL} tasks from {task_list}"
)
for _ in range(NUM_TASKS_TO_RUN_FOR_EACH_USER_AT_INTERVAL):
data = r.rpop(task_list)
if data is not None:
data = data.decode()
print(f"running task with data '{data}'")
run_task(data)
else:
print("there wasn't anything there")

View File

@@ -0,0 +1,58 @@
import datetime as dt
import redis
r = redis.Redis()
class TooManyRequests(Exception):
pass
TOKEN_BUCKET = {}
MAX_CAPACITY = 8
REFILL_EVERY_SECONDS = 15
NUM_TOKENS_TO_REFILL = 4
def get_entry_from_token_bucket(identifier: str) -> dict | None:
"""
This is implemented independently in order to decouple it from its caller.
Here it is initially implemented in-memory, but for scalability we'd
want to use something more long-lived.
"""
return TOKEN_BUCKET.get(identifier)
def token_bucket_in_memory_lazy_refill(identifier: str) -> str:
"""
Tokens are put in the bucket at preset rates periodically.
Once the bucket is full, no more tokens are added.
The refiller puts NUM_TOKENS_TO_REFILL tokens into the bucket every minute.
To be explicit, there is a token bucket for every `identifier`,
aka every user/IP
"""
entry = get_entry_from_token_bucket(identifier)
if entry is None:
TOKEN_BUCKET[identifier] = {
"tokens": MAX_CAPACITY,
"last_refilled": dt.datetime.now().timestamp(),
}
else:
last_refilled = entry["last_refilled"]
now = dt.datetime.now().timestamp()
if now >= last_refilled + REFILL_EVERY_SECONDS:
num_tokens_to_refill = int(
(now - last_refilled) // REFILL_EVERY_SECONDS * NUM_TOKENS_TO_REFILL
)
entry["last_refilled"] = dt.datetime.now().timestamp()
entry["tokens"] = min(entry["tokens"] + num_tokens_to_refill, MAX_CAPACITY)
left = TOKEN_BUCKET[identifier]["tokens"]
if left == 0:
raise TooManyRequests
TOKEN_BUCKET[identifier]["tokens"] -= 1

View File

@@ -6,7 +6,7 @@ from . import algos
application = f.Flask(__name__)
increment_requests_func = algos.token_bucket
increment_requests_func = algos.token_bucket_in_memory_lazy_refill
@application.before_request