896 lines
31 KiB
Markdown
896 lines
31 KiB
Markdown
---
|
|
title: How Does Svelte Actually Work? part 2
|
|
published: true
|
|
description: A conversational, thinking-out-loud tour of the JavaScript that Svelte outputs... part deux
|
|
tags: svelte, javascript
|
|
---
|
|
Here's part 1:
|
|
|
|
{% link https://dev.to/zev/how-does-svelte-actually-work-part-1-j9m %}
|
|
|
|
and here's the repository for what we've done so far:
|
|
|
|
{% github zevaverbach/how-svelte-works no-readme %}
|
|
|
|
(hint: we have barely changed Svelte's sample app).
|
|
|
|
# Episode Recap
|
|
|
|
On the previous episode of HDSAW we took a bewildering ride through the 400 or so lines of vanilla JavaScript the Svelte compiler produces from [the sample app](https://github.com/sveltejs/template). Here's [that vanilla JS](https://gist.github.com/zevaverbach/83901aed1230fbd3adb01b96a7be0572) for your perusal, and see below for an updated version.
|
|
|
|
## What We've Learned So Far
|
|
|
|
When we run `npm run dev` to compile the sample app, Rollup takes the contents of `main.js` and runs the Svelte compiler on it. This produces a file called `bundle.js` in the `build` directory.
|
|
|
|
`bundle.js` defines and immediately calls an anonymous function, creating an instance of `App` called `app`. The code which runs inside the constructor of `App` first renders the Svelte app, then binds a small handful of methods to the instance. These methods can be used to get and set the state of the app, including by the user in the browser's JavaScript console!
|
|
|
|
## Outstanding Questions
|
|
|
|
1) Is it a security problem that the user can directly manipulate the app's state from a browser's JavaScript console?
|
|
2) What is the difference between `app.$set` and `app.$inject_state`, if any?
|
|
3) How does `bundle.js` change with increasing app complexity? Multiple components, for example, or dynamically re-rendering props/state.
|
|
4) What is `__svelte_meta` for?
|
|
5) Where and when does `mount` actually get called?
|
|
6) Can `dirty` ever contain anything besides a single integer? In other words, are elements updated one after the next, or can `update` sometimes operate on more than one element at a run?
|
|
7) When are components and elements destroyed? Is Svelte as efficient about unnecessary re-renders as billed?
|
|
8) What are the setters and getters on `App` for and why are they implemented the way they are?
|
|
9) How does all this fit together? Asked another way, is it possible to have a basic understanding of how a web framework we use actually works?
|
|
|
|
We'll try to get through a few of these today, and then I'm sure more questions will emerge as we go.
|
|
|
|
# A Skinnier Bundle
|
|
|
|
This time around we're going to generate the `build.js` using `npm run build`, so as to not distract ourselves with the events that get emitted in dev mode. First, though, let's tell Rollup not to minify that file so we can actually read it:
|
|
|
|
```js
|
|
// ./rollup.config.js
|
|
...
|
|
// In dev mode, call `npm run start` once
|
|
// the bundle has been generated
|
|
!production && serve(),
|
|
|
|
// Watch the `public` directory and refresh the
|
|
// browser on changes when not in production
|
|
!production && livereload('public'),
|
|
|
|
// If we're building for production (npm run build
|
|
// instead of npm run dev), minify
|
|
// production && terser() 👈👈👈 comment this out
|
|
],
|
|
watch: {
|
|
...
|
|
```
|
|
|
|
`npm run build` produces this _really quite svelte_ code, which is now only about 300 lines!:
|
|
|
|
```js
|
|
// src/bundle.js
|
|
var app = (function () {
|
|
'use strict';
|
|
|
|
function noop() { }
|
|
function run(fn) {
|
|
return fn();
|
|
}
|
|
function blank_object() {
|
|
return Object.create(null);
|
|
}
|
|
function run_all(fns) {
|
|
fns.forEach(run);
|
|
}
|
|
function is_function(thing) {
|
|
return typeof thing === 'function';
|
|
}
|
|
function safe_not_equal(a, b) {
|
|
return a != a ? b == b : a !== b || ((a && typeof a === 'object') || typeof a === 'function');
|
|
}
|
|
|
|
function append(target, node) {
|
|
target.appendChild(node);
|
|
}
|
|
function insert(target, node, anchor) {
|
|
target.insertBefore(node, anchor || null);
|
|
}
|
|
function detach(node) {
|
|
node.parentNode.removeChild(node);
|
|
}
|
|
function element(name) {
|
|
return document.createElement(name);
|
|
}
|
|
function text(data) {
|
|
return document.createTextNode(data);
|
|
}
|
|
function space() {
|
|
return text(' ');
|
|
}
|
|
function attr(node, attribute, value) {
|
|
if (value == null)
|
|
node.removeAttribute(attribute);
|
|
else if (node.getAttribute(attribute) !== value)
|
|
node.setAttribute(attribute, value);
|
|
}
|
|
function children(element) {
|
|
return Array.from(element.childNodes);
|
|
}
|
|
function set_data(text, data) {
|
|
data = '' + data;
|
|
if (text.data !== data)
|
|
text.data = data;
|
|
}
|
|
|
|
let current_component;
|
|
function set_current_component(component) {
|
|
current_component = component;
|
|
}
|
|
|
|
const dirty_components = [];
|
|
const binding_callbacks = [];
|
|
const render_callbacks = [];
|
|
const flush_callbacks = [];
|
|
const resolved_promise = Promise.resolve();
|
|
let update_scheduled = false;
|
|
function schedule_update() {
|
|
if (!update_scheduled) {
|
|
update_scheduled = true;
|
|
resolved_promise.then(flush);
|
|
}
|
|
}
|
|
function add_render_callback(fn) {
|
|
render_callbacks.push(fn);
|
|
}
|
|
function flush() {
|
|
const seen_callbacks = new Set();
|
|
do {
|
|
// first, call beforeUpdate functions
|
|
// and update components
|
|
while (dirty_components.length) {
|
|
const component = dirty_components.shift();
|
|
set_current_component(component);
|
|
update(component.$$);
|
|
}
|
|
while (binding_callbacks.length)
|
|
binding_callbacks.pop()();
|
|
// then, once components are updated, call
|
|
// afterUpdate functions. This may cause
|
|
// subsequent updates...
|
|
for (let i = 0; i < render_callbacks.length; i += 1) {
|
|
const callback = render_callbacks[i];
|
|
if (!seen_callbacks.has(callback)) {
|
|
callback();
|
|
// ...so guard against infinite loops
|
|
seen_callbacks.add(callback);
|
|
}
|
|
}
|
|
render_callbacks.length = 0;
|
|
} while (dirty_components.length);
|
|
while (flush_callbacks.length) {
|
|
flush_callbacks.pop()();
|
|
}
|
|
update_scheduled = false;
|
|
}
|
|
function update($$) {
|
|
if ($$.fragment !== null) {
|
|
$$.update();
|
|
run_all($$.before_update);
|
|
$$.fragment && $$.fragment.p($$.ctx, $$.dirty);
|
|
$$.dirty = [-1];
|
|
$$.after_update.forEach(add_render_callback);
|
|
}
|
|
}
|
|
const outroing = new Set();
|
|
function transition_in(block, local) {
|
|
if (block && block.i) {
|
|
outroing.delete(block);
|
|
block.i(local);
|
|
}
|
|
}
|
|
function mount_component(component, target, anchor) {
|
|
const { fragment, on_mount, on_destroy, after_update } = component.$$;
|
|
fragment && fragment.m(target, anchor);
|
|
// onMount happens before the initial afterUpdate
|
|
add_render_callback(() => {
|
|
const new_on_destroy = on_mount.map(run).filter(is_function);
|
|
if (on_destroy) {
|
|
on_destroy.push(...new_on_destroy);
|
|
}
|
|
else {
|
|
// Edge case - component was destroyed immediately,
|
|
// most likely as a result of a binding initialising
|
|
run_all(new_on_destroy);
|
|
}
|
|
component.$$.on_mount = [];
|
|
});
|
|
after_update.forEach(add_render_callback);
|
|
}
|
|
function destroy_component(component, detaching) {
|
|
const $$ = component.$$;
|
|
if ($$.fragment !== null) {
|
|
run_all($$.on_destroy);
|
|
$$.fragment && $$.fragment.d(detaching);
|
|
// TODO null out other refs, including component.$$ (but need to
|
|
// preserve final state?)
|
|
$$.on_destroy = $$.fragment = null;
|
|
$$.ctx = [];
|
|
}
|
|
}
|
|
function make_dirty(component, i) {
|
|
if (component.$$.dirty[0] === -1) {
|
|
dirty_components.push(component);
|
|
schedule_update();
|
|
component.$$.dirty.fill(0);
|
|
}
|
|
component.$$.dirty[(i / 31) | 0] |= (1 << (i % 31));
|
|
}
|
|
function init(component, options, instance, create_fragment, not_equal, props, dirty = [-1]) {
|
|
const parent_component = current_component;
|
|
set_current_component(component);
|
|
const prop_values = options.props || {};
|
|
const $$ = component.$$ = {
|
|
fragment: null,
|
|
ctx: null,
|
|
// state
|
|
props,
|
|
update: noop,
|
|
not_equal,
|
|
bound: blank_object(),
|
|
// lifecycle
|
|
on_mount: [],
|
|
on_destroy: [],
|
|
before_update: [],
|
|
after_update: [],
|
|
context: new Map(parent_component ? parent_component.$$.context : []),
|
|
// everything else
|
|
callbacks: blank_object(),
|
|
dirty
|
|
};
|
|
let ready = false;
|
|
$$.ctx = instance
|
|
? instance(component, prop_values, (i, ret, value = ret) => {
|
|
if ($$.ctx && not_equal($$.ctx[i], $$.ctx[i] = value)) {
|
|
if ($$.bound[i])
|
|
$$.bound[i](value);
|
|
if (ready)
|
|
make_dirty(component, i);
|
|
}
|
|
return ret;
|
|
})
|
|
: [];
|
|
$$.update();
|
|
ready = true;
|
|
run_all($$.before_update);
|
|
// `false` as a special case of no DOM component
|
|
$$.fragment = create_fragment ? create_fragment($$.ctx) : false;
|
|
if (options.target) {
|
|
if (options.hydrate) {
|
|
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
|
$$.fragment && $$.fragment.l(children(options.target));
|
|
}
|
|
else {
|
|
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
|
$$.fragment && $$.fragment.c();
|
|
}
|
|
if (options.intro)
|
|
transition_in(component.$$.fragment);
|
|
mount_component(component, options.target, options.anchor);
|
|
flush();
|
|
}
|
|
set_current_component(parent_component);
|
|
}
|
|
class SvelteComponent {
|
|
$destroy() {
|
|
destroy_component(this, 1);
|
|
this.$destroy = noop;
|
|
}
|
|
$on(type, callback) {
|
|
const callbacks = (this.$$.callbacks[type] || (this.$$.callbacks[type] = []));
|
|
callbacks.push(callback);
|
|
return () => {
|
|
const index = callbacks.indexOf(callback);
|
|
if (index !== -1)
|
|
callbacks.splice(index, 1);
|
|
};
|
|
}
|
|
$set() {
|
|
// overridden by instance, if it has props
|
|
}
|
|
}
|
|
|
|
/* src/App.svelte generated by Svelte v3.16.0 */
|
|
|
|
function create_fragment(ctx) {
|
|
let main;
|
|
let h1;
|
|
let t0;
|
|
let t1;
|
|
let t2;
|
|
let t3;
|
|
let p0;
|
|
let t4;
|
|
let t5;
|
|
let t6;
|
|
let t7;
|
|
let p1;
|
|
|
|
return {
|
|
c() {
|
|
main = element("main");
|
|
h1 = element("h1");
|
|
t0 = text("Hello ");
|
|
t1 = text(/*name*/ ctx[0]);
|
|
t2 = text("!");
|
|
t3 = space();
|
|
p0 = element("p");
|
|
t4 = text("Your lucky number is ");
|
|
t5 = text(/*number*/ ctx[1]);
|
|
t6 = text(".");
|
|
t7 = space();
|
|
p1 = element("p");
|
|
p1.innerHTML = `Visit the <a href="https://svelte.dev/tutorial">Svelte tutorial</a> to learn how to build Svelte apps.`;
|
|
attr(h1, "class", "svelte-1tky8bj");
|
|
attr(main, "class", "svelte-1tky8bj");
|
|
},
|
|
m(target, anchor) {
|
|
insert(target, main, anchor);
|
|
append(main, h1);
|
|
append(h1, t0);
|
|
append(h1, t1);
|
|
append(h1, t2);
|
|
append(main, t3);
|
|
append(main, p0);
|
|
append(p0, t4);
|
|
append(p0, t5);
|
|
append(p0, t6);
|
|
append(main, t7);
|
|
append(main, p1);
|
|
},
|
|
p(ctx, [dirty]) {
|
|
if (dirty & /*name*/ 1) set_data(t1, /*name*/ ctx[0]);
|
|
if (dirty & /*number*/ 2) set_data(t5, /*number*/ ctx[1]);
|
|
},
|
|
i: noop,
|
|
o: noop,
|
|
d(detaching) {
|
|
if (detaching) detach(main);
|
|
}
|
|
};
|
|
}
|
|
|
|
function instance($$self, $$props, $$invalidate) {
|
|
let { name } = $$props;
|
|
let { number } = $$props;
|
|
|
|
$$self.$set = $$props => {
|
|
if ("name" in $$props) $$invalidate(0, name = $$props.name);
|
|
if ("number" in $$props) $$invalidate(1, number = $$props.number);
|
|
};
|
|
|
|
return [name, number];
|
|
}
|
|
|
|
class App extends SvelteComponent {
|
|
constructor(options) {
|
|
super();
|
|
init(this, options, instance, create_fragment, safe_not_equal, { name: 0, number: 1 });
|
|
}
|
|
}
|
|
|
|
const app = new App({
|
|
target: document.body,
|
|
props: {
|
|
name: 'World',
|
|
number: 42
|
|
}
|
|
});
|
|
|
|
return app;
|
|
|
|
}());
|
|
//# sourceMappingURL=bundle.js.map
|
|
```
|
|
|
|
This file, `bundle.js`, is what all of the following code blocks refer to, unless otherwise noted.
|
|
|
|
# Q: Where are the elements created in `create_fragment` mounted?
|
|
|
|
Here, in `init`:
|
|
|
|
```js
|
|
...
|
|
if (options.target) {
|
|
...
|
|
👇👇👇👇
|
|
mount_component(component, options.target, options.anchor);
|
|
👆👆👆👆
|
|
flush();
|
|
...
|
|
}
|
|
```
|
|
|
|
And `mount_component`, in the first two lines of its definition, destructures `fragment` from `component.$$` then calls `fragment.m`:
|
|
|
|
```js
|
|
function mount_component(component, target, anchor) {
|
|
const { fragment, on_mount, on_destroy, after_update } = component.$$;
|
|
fragment && fragment.m(target, anchor);
|
|
...
|
|
```
|
|
|
|
As a reminder from part 1, `m` stands for "mount" (it was actually called that when compiling in dev mode), and it takes the elements created in `fragment.c` and adds them to the DOM with eminently readable and grokkable JS:
|
|
|
|
```js
|
|
m(target, anchor) {
|
|
// these 👇👇👇 three parameters are equivalent to `document.body`, <main/>, and `undefined`
|
|
insert(target, main, anchor);
|
|
append(main, h1);
|
|
append(h1, t0);
|
|
append(h1, t1);
|
|
append(h1, t2);
|
|
append(main, t3);
|
|
append(main, p0);
|
|
append(p0, t4);
|
|
append(p0, t5);
|
|
append(p0, t6);
|
|
append(main, t7);
|
|
append(main, p1);
|
|
},
|
|
...
|
|
function append(target, node) {
|
|
target.appendChild(node);
|
|
}
|
|
|
|
function insert(target, node, anchor) {
|
|
target.insertBefore(node, anchor || null);
|
|
}
|
|
```
|
|
|
|
Reminder: This is one of the things that makes Svelte great, and unique among popular frameworks: The abstractions are not so deep or complex; so far, we are never far from `document.doSomething` operations.
|
|
|
|
# Disappearing Questions
|
|
|
|
Now that we've left dev mode for our explorations, it seems that a few outstanding questions have evaporated:
|
|
|
|
## What is `__svelte_meta` for?
|
|
|
|
It doesn't appear in `bundle.js` in production mode! It's for dev tooling, must be: "Error X on line Y, character Z", and so on.
|
|
|
|
Mystery solved! 🕵
|
|
|
|
## What is the difference between `app.$set` and `app.$inject_state`, if any?
|
|
|
|
Well, their implementations are identical,
|
|
|
|
```js
|
|
// version of bundle.js in dev mode
|
|
function instance($$self, $$props, $$invalidate) {
|
|
...
|
|
$$self.$set = $$props => {
|
|
if ("name" in $$props) $$invalidate(0, name = $$props.name);
|
|
if ("number" in $$props) $$invalidate(1, number = $$props.number);
|
|
};
|
|
$$self.$inject_state = $$props => {
|
|
if ("name" in $$props) $$invalidate(0, name = $$props.name);
|
|
if ("number" in $$props) $$invalidate(1, number = $$props.number);
|
|
};
|
|
...
|
|
}
|
|
|
|
```
|
|
|
|
annnnnddd... `$inject_state` doesn't even get defined in the production build,
|
|
|
|
```js
|
|
// production build of bundle.js
|
|
function instance($$self, $$props, $$invalidate) {
|
|
let { name } = $$props;
|
|
let { number } = $$props;
|
|
|
|
$$self.$set = $$props => {
|
|
if ("name" in $$props) $$invalidate(0, name = $$props.name);
|
|
if ("number" in $$props) $$invalidate(1, number = $$props.number);
|
|
};
|
|
|
|
return [name, number];
|
|
}
|
|
```
|
|
so let's assume it's a very careful piece of naming to distinguish what dev tools use to set state, as compared with how state is set internally in the app.
|
|
|
|
Turns out, yep!:
|
|
|
|
{% twitter 1203024631390715912 %}
|
|
|
|
Finally, it looks like the setter and getter methods on `App` don't appear in production mode. We can therefore scratch that question off the list, as we're not concerned with the dev tooling part of the generated code for now.
|
|
|
|
# The `$$invalidate` Callback
|
|
|
|
In the `instance` function (👆👆👆 much shorter in prod), the `$set` method is bound to `app`. Presumably this is the only way prop updates propagate through the app, so it'll behoove us to understand how it's defined in the calling code:
|
|
|
|
```js
|
|
...
|
|
function init(component, options, instance, create_fragment, not_equal, props, dirty = [-1]) {
|
|
...
|
|
instance(component, prop_values, (i, ret, value = ret) => {
|
|
if ($$.ctx && not_equal($$.ctx[i], $$.ctx[i] = value)) {
|
|
if ($$.bound[i])
|
|
$$.bound[i](value);
|
|
if (ready)
|
|
make_dirty(component, i);
|
|
}
|
|
return ret;
|
|
})
|
|
```
|
|
|
|
This is hard to read, so let's write it as a normal, somewhat simplified, non-anonymous function:
|
|
|
|
```js
|
|
function invalidateProp(i, ret, value = ret) {
|
|
const currentVal = $$.ctx[i]
|
|
const newVal = value
|
|
if (currentVal !== newVal) {
|
|
// do some things with `$$.bound` and `ready` that will never trigger in the current app
|
|
}
|
|
$$.ctx[i] = newVal
|
|
return ret
|
|
}
|
|
```
|
|
|
|
So if `invalidateProp` is called like so,
|
|
|
|
```js
|
|
invalidateProp(0, name = "Whirl");
|
|
```
|
|
|
|
the only things that will happen are
|
|
|
|
1) `$$.ctx[0]` will equal "Whirl"
|
|
2) "Whirl" will be returned.
|
|
3) Nothing anywhere will consume that return value in the current app.
|
|
|
|
# Hypothesis #3: `$$.bound` and `ready` Will Come Into Play If There's Some Interactive UI
|
|
|
|
Furthermore, I'm thinking `$$invalidate`'s return value might actually get used somewhere. There's plenty more to explore ahead of this test, but let's forge ahead and see what magic the compiler has for us.
|
|
|
|
## Testing Hypothesis #3
|
|
|
|
Let's make a button to increment `number`:
|
|
|
|
```html
|
|
<!-- src/App.svelte -->
|
|
<script>
|
|
export let name;
|
|
export let number;
|
|
</script>
|
|
|
|
<main>
|
|
<h1>Hello {name}!</h1>
|
|
<p>Your lucky number is {number}.</p>
|
|
<p>Visit the <a href="https://svelte.dev/tutorial">Svelte tutorial</a> to learn how to build Svelte apps.</p>
|
|
<!-- 👇👇👇 new -->
|
|
<button on:click={() => number += 1}>
|
|
Make Number More Bigger
|
|
</button>
|
|
</main>
|
|
```
|
|
Isn't Svelte so beautifully straightforward and succinct? 😍😍😍
|
|
|
|
Then, `npm run build`. To view the app, run `python3 -m http.server` from the `app` folder, then navigate to <http://localhost:8000>. Click that beautiful button and watch your lucky number mutate!
|
|
|
|

|
|
|
|
Before hypothesis validating, `bundle.js` has some new toys for us! Here are the new lines in the resulting `bundle.js`:
|
|
|
|
```js
|
|
function listen(node, event, handler, options) {
|
|
node.addEventListener(event, handler, options);
|
|
return () => node.removeEventListener(event, handler, options);
|
|
|
|
c() {
|
|
...
|
|
t11 = space();
|
|
button = element("button");
|
|
button.textContent = "Make Number More Bigger";
|
|
...
|
|
dispose = listen(button, "click", /*click_handler*/ ctx[2]);
|
|
// and m() mounts 👆👆👆 them
|
|
}
|
|
|
|
d(detaching) {
|
|
if (detaching) detach(main);
|
|
dispose();
|
|
}
|
|
|
|
function instance($$self, $$props, $$invalidate) {
|
|
...
|
|
const click_handler = () => $$invalidate(0, number += 1);
|
|
...
|
|
return [number, name, click_handler];
|
|
}
|
|
|
|
```
|
|
Running through the changes, there's nothing shocking. The button is added, its click handler is added to the DOM, and the click handler is set up to be removed if `App` is detached. `click_handler` is added to `$$.ctx`.
|
|
|
|
I don't see any of my hypotheses proving out here! `$$.bound` remains an empty object, `$$invalidate`'s return value remains un-consumed, and there's still only one spot where `ready` is set to `true`, and that's _after_ `instance` is called.
|
|
|
|
Sidenote: There was one other change, and it's really weird:
|
|
|
|
```js
|
|
class App extends SvelteComponent {
|
|
constructor(options) {
|
|
super();
|
|
// 👇👇👇 before
|
|
// init(this, options, instance, create_fragment, safe_not_equal, { name: 0, number: 1 });
|
|
// 👇👇👇 after
|
|
init(this, options, instance, create_fragment, safe_not_equal, { name: 1, number: 0 });
|
|
}
|
|
}
|
|
```
|
|
The props have inexplicably swapped their indices. What madness is this?! Restraining myself from tweeting at Svelte about this one... for now. Maybe it will explain itself as we go.
|
|
|
|
# The Most Basic Knowledge We're Missing
|
|
|
|
I still don't know what actually triggers the function `update` to run!
|
|
|
|
As a reminder, we studied `update` in part 1 because it was the only place where `$$.fragment`—the object containing the methods for creating, destroying, and updating the rendered elements—was updated. As a further reminder, the key line in `update` calls `$$.fragment.p($$.ctx, $$.dirty)`, `fragment.p` being short for `fragment.update`: It checks the value of `dirty` and potentially updates the node identified by `dirty`, if the provided new value differs from the node's current one.
|
|
|
|
```js
|
|
...
|
|
function update($$) {
|
|
if ($$.fragment !== null) {
|
|
$$.update();
|
|
run_all($$.before_update);
|
|
$$.fragment && $$.fragment.p($$.ctx, $$.dirty);
|
|
$$.dirty = [-1];
|
|
$$.after_update.forEach(add_render_callback);
|
|
}
|
|
}
|
|
...
|
|
function create_fragment(ctx) {
|
|
...
|
|
// === $$.fragment.p
|
|
p(ctx, [dirty]) {
|
|
if (dirty & /*name*/ 2) set_data(t1, /*name*/ ctx[1]);
|
|
if (dirty & /*number*/ 1) set_data(t5, /*number*/ ctx[0]);
|
|
},
|
|
...
|
|
}
|
|
|
|
```
|
|
|
|
Conveniently, the function `update` (distinct from the method `$$.fragment.p`) is called in only one place:
|
|
|
|
```js
|
|
function flush() {
|
|
const seen_callbacks = new Set();
|
|
do {
|
|
// first, call beforeUpdate functions
|
|
// and update components
|
|
while (dirty_components.length) {
|
|
const component = dirty_components.shift();
|
|
set_current_component(component);
|
|
update(component.$$);
|
|
}
|
|
while (binding_callbacks.length)
|
|
binding_callbacks.pop()();
|
|
// then, once components are updated, call
|
|
// afterUpdate functions. This may cause
|
|
// subsequent updates...
|
|
for (let i = 0; i < render_callbacks.length; i += 1) {
|
|
const callback = render_callbacks[i];
|
|
if (!seen_callbacks.has(callback)) {
|
|
callback();
|
|
// ...so guard against infinite loops
|
|
seen_callbacks.add(callback);
|
|
}
|
|
}
|
|
render_callbacks.length = 0;
|
|
} while (dirty_components.length);
|
|
while (flush_callbacks.length) {
|
|
flush_callbacks.pop()();
|
|
}
|
|
update_scheduled = false;
|
|
}
|
|
```
|
|
|
|
There's a lot here, but as with much of the code generated by Svelte with a basic app, we don't have to concern ourselves with any of the callback-related parts. This is the relevant section:
|
|
|
|
```js
|
|
...
|
|
while (dirty_components.length) {
|
|
const component = dirty_components.shift();
|
|
set_current_component(component);
|
|
update(component.$$);
|
|
...
|
|
```
|
|
|
|
This is the first time we're dealing with `dirty_components`: Where is this array modified? Why, in the aptly named `make_dirty` function.
|
|
|
|
```js
|
|
function make_dirty(component, i) {
|
|
if (component.$$.dirty[0] === -1) {
|
|
dirty_components.push(component);
|
|
schedule_update();
|
|
component.$$.dirty.fill(0);
|
|
}
|
|
component.$$.dirty[(i / 31) | 0] |= (1 << (i % 31));
|
|
}
|
|
```
|
|
|
|
And where is `make_dirty` called?
|
|
|
|
```js
|
|
function init(component, options, instance, create_fragment, not_equal, props, dirty = [-1]) {
|
|
...
|
|
let ready = false;
|
|
$$.ctx = instance
|
|
? instance(component, prop_values, (i, ret, value = ret) => {
|
|
if ($$.ctx && not_equal($$.ctx[i], $$.ctx[i] = value)) {
|
|
if ($$.bound[i])
|
|
$$.bound[i](value);
|
|
if (ready)
|
|
make_dirty(component, i);
|
|
}
|
|
return ret;
|
|
})
|
|
: [];
|
|
$$.update();
|
|
ready = true;
|
|
...
|
|
}
|
|
```
|
|
|
|
This is a bit confusing, though, because `make_dirty` is only called if `ready` is `true`, and `ready` appears to be false when the `$$invalidate` callback is defined.
|
|
|
|
{% twitter 1203955045093523456 %}
|
|
|
|
~~For now we're going to skate right past the scope monster and accept the mystery of `ready`'s truthiness.~~
|
|
|
|
Thank you to my fellow Recurse Center alum Thomas Ballinger for demystifying this:
|
|
|
|
{% twitter 1204039246421487616 %}
|
|
|
|
Yup, it was a scope monster, or to put it another way, "scope". To spell it out, that 👆👆👆 `ready = true` takes effect for the `ready` inside the anonymous function's body, well before it's called as `$$invalidate`.
|
|
|
|
Here's more clarification from Svelte themselves:
|
|
|
|
{% twitter 1204183558912401408 %}
|
|
|
|
🤔 Methinks this will make more sense when I'm older. I mean, in part X of our little adventure...
|
|
|
|
Okay then, `ready` is true for our purposes, which means when `invalidateProp` is called, `make_dirty` gets called with the `App` instance for `component` and the _index_ of whatever prop has been modified. So, something like `make_dirty(App, 1)`.
|
|
|
|
The function `make_dirty`
|
|
|
|
1) adds the component (`App` instance here) to an array called `dirty_components`
|
|
2) does something confusing in `schedule_update`, but, importantly, calls `flush`
|
|
3) updates `component.$$.dirty`
|
|
|
|
```js
|
|
function make_dirty(component, i) {
|
|
...
|
|
dirty_components.push(component);
|
|
schedule_update();
|
|
component.$$.dirty.fill(0);
|
|
...
|
|
}
|
|
...
|
|
function schedule_update() {
|
|
...
|
|
resolved_promise.then(flush)
|
|
}
|
|
```
|
|
|
|
So we've found where `dirty_components` is mutated, and as a bonus, where `flush` gets called (`schedule_update`).
|
|
|
|
We'll study the `Array.fill` later, but returning to `flush`'s definition, it appears that `dirty_components` is being used as a queue:
|
|
|
|
```js
|
|
const component = dirty_components.shift();
|
|
set_current_component(component);
|
|
update(component.$$);
|
|
```
|
|
|
|
The meaning of `current_component` doesn't seem important in this early moment when there's only a single component in our app. This makes the only interesting code here the call to `update`, which as we already know triggers `set_data` on any relevant elements.
|
|
|
|
## The Last Piece
|
|
|
|
We nearly have the full picture of how prop changes make their way through `bundle.js`. There is a curveball with respect to our current understanding, though:
|
|
|
|
### What is `$set` For???
|
|
|
|
`app.$set` is never called in our app: It appears to be a debugging utility, or maybe a hook for external tools. So this function isn't part of the pipeline of functions handling prop changes. Sorry about that; one day the knowledge we built about `$set` will have its moment, I assure you!
|
|
|
|
### So Where? Sneaky Succinctness
|
|
|
|
It took me a bit of `console.log`-ing to realize where the pipeline begins:
|
|
|
|
```js
|
|
$$.ctx = instance
|
|
? instance(component, prop_values, (i, ret, value = ret) => {
|
|
// right here 👇👇👇
|
|
if ($$.ctx && not_equal($$.ctx[i], $$.ctx[i] = value)) {
|
|
if ($$.bound[i])
|
|
$$.bound[i](value);
|
|
if (ready)
|
|
make_dirty(component, i);
|
|
}
|
|
return ret;
|
|
})
|
|
: [];
|
|
```
|
|
|
|
It isn't clear to me at all why this anonymous function runs more than once (on `App` instantiation), but it can be demonstrated that it does with
|
|
|
|
```js
|
|
...
|
|
if ($$.ctx && not_equal($$.ctx[i], $$.ctx[i] = "default")) {
|
|
...
|
|
```
|
|
|
|
Which functions like so:
|
|
|
|

|
|
|
|
This is a bit sneaky, stuffing a variable reassignment inside a function call! Nevertheless, we now have the pipeline mapped:
|
|
|
|
# Props Pipeline
|
|
|
|
1) `init`: `if(not_equal($$.ctx[i], $$.ctx[i] = value))` (the assignment there)
|
|
2) `init`: `make_dirty(component, i);`
|
|
3) `make_dirty`: `dirty_components.push(component);`
|
|
4) `make_dirty`: `schedule_update();`
|
|
5) `make_dirty`: `component.$$.dirty[(i / 31) | 0] |= (1 << (i % 31));`
|
|
5) `schedule_update`: `resolved_promise.then(flush);` (equivalent to `flush()`)
|
|
6) `flush`: `while (dirty_components.length) update(component.$$);`
|
|
7) `update`: `$$.fragment.p($$.ctx, $$.dirty);`
|
|
8) `$$.fragment.p`: `if (dirty & /*number*/ 1) set_data(t5, /*number*/ ctx[0]);
|
|
`
|
|
9) `set_data`: if `(text.data !== data) text.data = data;`
|
|
|
|
A note about `resolved_promised.then`: It _isn't_ exactly the same as calling `flush`, as even though `schedule_update` is called before `component.$$.dirty` is mutated, that mutation has taken place by the time `flush` executes here. The mechanism for this isn't clear to me yet.
|
|
|
|
There's actually a variation on the start of this pipeline, as `$$invalidate` _is_ actually called in the click handler:
|
|
|
|
```js
|
|
function instance($$self, $$props, $$invalidate) {
|
|
...
|
|
const click_handler = () => $$invalidate(0, number += 1);
|
|
...
|
|
}
|
|
|
|
function create_fragment(ctx) {
|
|
...
|
|
c() {
|
|
dispose = listen(button, "click", /*click_handler*/ ctx[2]);
|
|
...
|
|
}
|
|
...
|
|
}
|
|
```
|
|
|
|
1) *click*
|
|
2) `instance`: `const click_handler = () => $$invalidate(0, number += 1);`
|
|
3) 1-9 above
|
|
|
|
# Next Time
|
|
|
|
Join us next time for the further adventures of Svelte Spelunker! Discover the secrets of the runtime, such as
|
|
|
|
1) How does `bundle.js` change with increasing app complexity? Multiple components, for example, or dynamically re-rendering props/state.
|
|
2) Can `dirty` ever contain anything besides a single integer? In other words, are elements updated one after the next ("ATOMIC"), or can `update` sometimes operate on more than one element at a run?
|
|
3) When are components and elements destroyed? Are Svelte and Rollup as efficient about unnecessary re-renders as billed?
|
|
4) Is it a security problem that the user can directly manipulate the state from a browser's JavaScript console?
|
|
|
|
## New Questions
|
|
|
|
1) What's up with step 1 of the props pipeline? How and why does it run when a prop changes?
|
|
2) how do `$$.bound` and `ready` figure into `init`?
|
|
3) This has been there all along, but why the `space()`s in `block`?
|
|
4) What is `outroing`? An inside joke? Obscure British slang? Both? 🎩
|
|
5) Why does `$set` even exist? Hint:
|
|
|
|
{% twitter 1204182586823720964 %}
|
|
|
|
5) Why does Rollup/Svelte compiler include "name" in the $set binding (in `instance`) when it currently will never be mutated?
|
|
6) Why did `number` and `name` swap position in the call to `init` when `number` got attached to an event listener?
|
|
7) What's this business doing exactly? `component.$$.dirty[(i / 31) | 0] |= (1 << (i % 31));`
|
|
|