added celeryexecutor docker-compose
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
FROM puckel/docker-airflow:1.10.3
|
||||
RUN pip install --user psycopg2-binary
|
||||
ENV AIRFLOW_HOME=/usr/local/airflow
|
||||
COPY ./airflow.cfg /usr/local/airflow/airflow.cfg
|
||||
# or ./airflow_celeryexecutor.cfg /usr/local/airflow/airflow.cfg if you need .cfg with CeleryExecutor
|
||||
|
||||
594
airflow_celeryexecutor.cfg
Normal file
594
airflow_celeryexecutor.cfg
Normal file
@@ -0,0 +1,594 @@
|
||||
[core]
|
||||
# The home folder for airflow, default is ~/airflow
|
||||
|
||||
# The folder where your airflow pipelines live, most likely a
|
||||
# subfolder in a code repository
|
||||
# This path must be absolute
|
||||
dags_folder = /usr/local/airflow/dags
|
||||
|
||||
# The folder where airflow should store its log files
|
||||
# This path must be absolute
|
||||
base_log_folder = /usr/local/airflow/logs
|
||||
|
||||
# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
|
||||
# Users must supply an Airflow connection id that provides access to the storage
|
||||
# location. If remote_logging is set to true, see UPDATING.md for additional
|
||||
# configuration requirements.
|
||||
remote_logging = False
|
||||
remote_log_conn_id =
|
||||
remote_base_log_folder =
|
||||
encrypt_s3_logs = False
|
||||
|
||||
# Logging level
|
||||
logging_level = INFO
|
||||
fab_logging_level = WARN
|
||||
|
||||
# Logging class
|
||||
# Specify the class that will specify the logging configuration
|
||||
# This class has to be on the python classpath
|
||||
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
|
||||
logging_config_class =
|
||||
|
||||
# Log format
|
||||
# we need to escape the curly braces by adding an additional curly brace
|
||||
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
|
||||
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
|
||||
|
||||
# Log filename format
|
||||
# we need to escape the curly braces by adding an additional curly brace
|
||||
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
|
||||
log_processor_filename_template = {{ filename }}.log
|
||||
|
||||
# Hostname by providing a path to a callable, which will resolve the hostname
|
||||
hostname_callable = socket:getfqdn
|
||||
|
||||
# Default timezone in case supplied date times are naive
|
||||
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
|
||||
default_timezone = utc
|
||||
|
||||
# The executor class that airflow should use. Choices include
|
||||
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor
|
||||
executor = CeleryExecutor
|
||||
|
||||
# The SqlAlchemy connection string to the metadata database.
|
||||
# SqlAlchemy supports many different database engine, more information
|
||||
# their website
|
||||
sql_alchemy_conn = postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
|
||||
|
||||
# If SqlAlchemy should pool database connections.
|
||||
sql_alchemy_pool_enabled = True
|
||||
|
||||
# The SqlAlchemy pool size is the maximum number of database connections
|
||||
# in the pool. 0 indicates no limit.
|
||||
sql_alchemy_pool_size = 5
|
||||
|
||||
# The SqlAlchemy pool recycle is the number of seconds a connection
|
||||
# can be idle in the pool before it is invalidated. This config does
|
||||
# not apply to sqlite. If the number of DB connections is ever exceeded,
|
||||
# a lower config value will allow the system to recover faster.
|
||||
sql_alchemy_pool_recycle = 1800
|
||||
|
||||
# How many seconds to retry re-establishing a DB connection after
|
||||
# disconnects. Setting this to 0 disables retries.
|
||||
sql_alchemy_reconnect_timeout = 300
|
||||
|
||||
# The amount of parallelism as a setting to the executor. This defines
|
||||
# the max number of task instances that should run simultaneously
|
||||
# on this airflow installation
|
||||
parallelism = 32
|
||||
|
||||
# The number of task instances allowed to run concurrently by the scheduler
|
||||
dag_concurrency = 16
|
||||
|
||||
# Are DAGs paused by default at creation
|
||||
dags_are_paused_at_creation = True
|
||||
|
||||
# When not using pools, tasks are run in the "default pool",
|
||||
# whose size is guided by this config element
|
||||
non_pooled_task_slot_count = 128
|
||||
|
||||
# The maximum number of active DAG runs per DAG
|
||||
max_active_runs_per_dag = 16
|
||||
|
||||
# Whether to load the examples that ship with Airflow. It's good to
|
||||
# get started, but you probably want to set this to False in a production
|
||||
# environment
|
||||
load_examples = False
|
||||
|
||||
# Where your Airflow plugins are stored
|
||||
plugins_folder = /usr/local/airflow/plugins
|
||||
|
||||
# Secret key to save connection passwords in the db
|
||||
fernet_key = cryptography_not_found_storing_passwords_in_plain_text
|
||||
|
||||
# Whether to disable pickling dags
|
||||
donot_pickle = False
|
||||
|
||||
# How long before timing out a python file import while filling the DagBag
|
||||
dagbag_import_timeout = 30
|
||||
|
||||
# The class to use for running task instances in a subprocess
|
||||
task_runner = StandardTaskRunner
|
||||
|
||||
# If set, tasks without a `run_as_user` argument will be run with this user
|
||||
# Can be used to de-elevate a sudo user running Airflow when executing tasks
|
||||
default_impersonation =
|
||||
|
||||
# What security module to use (for example kerberos):
|
||||
security =
|
||||
|
||||
# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
|
||||
# In 2.0 will default to True.
|
||||
secure_mode = True
|
||||
|
||||
# Turn unit test mode on (overwrites many configuration options with test
|
||||
# values at runtime)
|
||||
unit_test_mode = False
|
||||
|
||||
# Name of handler to read task instance logs.
|
||||
# Default to use task handler.
|
||||
task_log_reader = task
|
||||
|
||||
# Whether to enable pickling for xcom (note that this is insecure and allows for
|
||||
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
|
||||
enable_xcom_pickling = True
|
||||
|
||||
# When a task is killed forcefully, this is the amount of time in seconds that
|
||||
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
|
||||
killed_task_cleanup_time = 60
|
||||
|
||||
# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow backfill -c` or
|
||||
# `airflow trigger_dag -c`, the key-value pairs will override the existing ones in params.
|
||||
dag_run_conf_overrides_params = False
|
||||
|
||||
[cli]
|
||||
# In what way should the cli access the API. The LocalClient will use the
|
||||
# database directly, while the json_client will use the api running on the
|
||||
# webserver
|
||||
api_client = airflow.api.client.local_client
|
||||
|
||||
# If you set web_server_url_prefix, do NOT forget to append it here, ex:
|
||||
# endpoint_url = http://localhost:8080/myroot
|
||||
# So api will look like: http://localhost:8080/myroot/api/experimental/...
|
||||
endpoint_url = http://localhost:8080
|
||||
|
||||
[api]
|
||||
# How to authenticate users of the API
|
||||
auth_backend = airflow.api.auth.backend.default
|
||||
|
||||
[lineage]
|
||||
# what lineage backend to use
|
||||
backend =
|
||||
|
||||
[atlas]
|
||||
sasl_enabled = False
|
||||
host =
|
||||
port = 21000
|
||||
username =
|
||||
password =
|
||||
|
||||
[operators]
|
||||
# The default owner assigned to each new operator, unless
|
||||
# provided explicitly or passed via `default_args`
|
||||
default_owner = Airflow
|
||||
default_cpus = 1
|
||||
default_ram = 512
|
||||
default_disk = 512
|
||||
default_gpus = 0
|
||||
|
||||
[hive]
|
||||
# Default mapreduce queue for HiveOperator tasks
|
||||
default_hive_mapred_queue =
|
||||
|
||||
[webserver]
|
||||
# The base url of your website as airflow cannot guess what domain or
|
||||
# cname you are using. This is used in automated emails that
|
||||
# airflow sends to point links to the right web server
|
||||
base_url = http://localhost:8080
|
||||
|
||||
# The ip specified when starting the web server
|
||||
web_server_host = 0.0.0.0
|
||||
|
||||
# The port on which to run the web server
|
||||
web_server_port = 8080
|
||||
|
||||
# Paths to the SSL certificate and key for the web server. When both are
|
||||
# provided SSL will be enabled. This does not change the web server port.
|
||||
web_server_ssl_cert =
|
||||
web_server_ssl_key =
|
||||
|
||||
# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
|
||||
web_server_master_timeout = 120
|
||||
|
||||
# Number of seconds the gunicorn webserver waits before timing out on a worker
|
||||
web_server_worker_timeout = 120
|
||||
|
||||
# Number of workers to refresh at a time. When set to 0, worker refresh is
|
||||
# disabled. When nonzero, airflow periodically refreshes webserver workers by
|
||||
# bringing up new ones and killing old ones.
|
||||
worker_refresh_batch_size = 1
|
||||
|
||||
# Number of seconds to wait before refreshing a batch of workers.
|
||||
worker_refresh_interval = 30
|
||||
|
||||
# Secret key used to run your flask app
|
||||
secret_key = temporary_key
|
||||
|
||||
# Number of workers to run the Gunicorn web server
|
||||
workers = 4
|
||||
|
||||
# The worker class gunicorn should use. Choices include
|
||||
# sync (default), eventlet, gevent
|
||||
worker_class = sync
|
||||
|
||||
# Log files for the gunicorn webserver. '-' means log to stderr.
|
||||
access_logfile = -
|
||||
error_logfile = -
|
||||
|
||||
# Expose the configuration file in the web server
|
||||
expose_config = True
|
||||
|
||||
# Set to true to turn on authentication:
|
||||
# https://airflow.incubator.apache.org/security.html#web-authentication
|
||||
authenticate = False
|
||||
|
||||
# Filter the list of dags by owner name (requires authentication to be enabled)
|
||||
filter_by_owner = False
|
||||
|
||||
# Filtering mode. Choices include user (default) and ldapgroup.
|
||||
# Ldap group filtering requires using the ldap backend
|
||||
#
|
||||
# Note that the ldap server needs the "memberOf" overlay to be set up
|
||||
# in order to user the ldapgroup mode.
|
||||
owner_mode = user
|
||||
|
||||
# Default DAG view. Valid values are:
|
||||
# tree, graph, duration, gantt, landing_times
|
||||
dag_default_view = tree
|
||||
|
||||
# Default DAG orientation. Valid values are:
|
||||
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
|
||||
dag_orientation = LR
|
||||
|
||||
# Puts the webserver in demonstration mode; blurs the names of Operators for
|
||||
# privacy.
|
||||
demo_mode = False
|
||||
|
||||
# The amount of time (in secs) webserver will wait for initial handshake
|
||||
# while fetching logs from other worker machine
|
||||
log_fetch_timeout_sec = 5
|
||||
|
||||
# By default, the webserver shows paused DAGs. Flip this to hide paused
|
||||
# DAGs by default
|
||||
hide_paused_dags_by_default = False
|
||||
|
||||
# Consistent page size across all listing views in the UI
|
||||
page_size = 100
|
||||
|
||||
# Use FAB-based webserver with RBAC feature
|
||||
rbac = False
|
||||
|
||||
# Define the color of navigation bar
|
||||
navbar_color = #007A87
|
||||
|
||||
# Default dagrun to show in UI
|
||||
default_dag_run_display_number = 25
|
||||
|
||||
|
||||
[email]
|
||||
email_backend = airflow.utils.email.send_email_smtp
|
||||
|
||||
|
||||
[smtp]
|
||||
# If you want airflow to send emails on retries, failure, and you want to use
|
||||
# the airflow.utils.email.send_email_smtp function, you have to configure an
|
||||
# smtp server here
|
||||
smtp_host = localhost
|
||||
smtp_starttls = True
|
||||
smtp_ssl = False
|
||||
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
|
||||
# smtp_user = airflow
|
||||
# smtp_password = airflow
|
||||
smtp_port = 25
|
||||
smtp_mail_from = airflow@example.com
|
||||
|
||||
|
||||
[celery]
|
||||
# This section only applies if you are using the CeleryExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The app name that will be used by celery
|
||||
celery_app_name = airflow.executors.celery_executor
|
||||
|
||||
# The concurrency that will be used when starting workers with the
|
||||
# "airflow worker" command. This defines the number of task instances that
|
||||
# a worker will take, so size up your workers based on the resources on
|
||||
# your worker box and the nature of your tasks
|
||||
worker_concurrency = 16
|
||||
|
||||
# When you start an airflow worker, airflow starts a tiny web server
|
||||
# subprocess to serve the workers local log files to the airflow main
|
||||
# web server, who then builds pages and sends them to users. This defines
|
||||
# the port on which the logs are served. It needs to be unused, and open
|
||||
# visible from the main web server to connect into the workers.
|
||||
worker_log_server_port = 8793
|
||||
|
||||
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
|
||||
# a sqlalchemy database. Refer to the Celery documentation for more
|
||||
# information.
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
|
||||
broker_url = redis://redis:6379/0
|
||||
|
||||
# The Celery result_backend. When a job finishes, it needs to update the
|
||||
# metadata of the job. Therefore it will post a message on a message bus,
|
||||
# or insert it into a database (depending of the backend)
|
||||
# This status is used by the scheduler to update the state of the task
|
||||
# The use of a database is highly recommended
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
|
||||
result_backend = db+postgresql://airflow:airflow@postgres:5432/airflow
|
||||
|
||||
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
|
||||
# it `airflow flower`. This defines the IP that Celery Flower runs on
|
||||
flower_host = flower
|
||||
|
||||
# The root URL for Flower
|
||||
# Ex: flower_url_prefix = /flower
|
||||
flower_url_prefix =
|
||||
|
||||
# This defines the port that Celery Flower runs on
|
||||
flower_port = 5555
|
||||
|
||||
# Default queue that tasks get assigned to and that worker listen on.
|
||||
default_queue = default
|
||||
|
||||
# Import path for celery configuration options
|
||||
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
|
||||
|
||||
# In case of using SSL
|
||||
ssl_active = False
|
||||
ssl_key =
|
||||
ssl_cert =
|
||||
ssl_cacert =
|
||||
|
||||
[celery_broker_transport_options]
|
||||
# This section is for specifying options which can be passed to the
|
||||
# underlying celery broker transport. See:
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options
|
||||
|
||||
# The visibility timeout defines the number of seconds to wait for the worker
|
||||
# to acknowledge the task before the message is redelivered to another worker.
|
||||
# Make sure to increase the visibility timeout to match the time of the longest
|
||||
# ETA you're planning to use.
|
||||
#
|
||||
# visibility_timeout is only supported for Redis and SQS celery brokers.
|
||||
# See:
|
||||
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
|
||||
|
||||
visibility_timeout = 21600
|
||||
|
||||
[dask]
|
||||
# This section only applies if you are using the DaskExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The IP address and port of the Dask cluster's scheduler.
|
||||
cluster_address = 127.0.0.1:8786
|
||||
# TLS/ SSL settings to access a secured Dask scheduler.
|
||||
tls_ca =
|
||||
tls_cert =
|
||||
tls_key =
|
||||
|
||||
|
||||
[scheduler]
|
||||
# Task instances listen for external kill signal (when you clear tasks
|
||||
# from the CLI or the UI), this defines the frequency at which they should
|
||||
# listen (in seconds).
|
||||
job_heartbeat_sec = 5
|
||||
|
||||
# The scheduler constantly tries to trigger new tasks (look at the
|
||||
# scheduler section in the docs for more information). This defines
|
||||
# how often the scheduler should run (in seconds).
|
||||
scheduler_heartbeat_sec = 5
|
||||
|
||||
# after how much time should the scheduler terminate in seconds
|
||||
# -1 indicates to run continuously (see also num_runs)
|
||||
run_duration = -1
|
||||
|
||||
# after how much time a new DAGs should be picked up from the filesystem
|
||||
min_file_process_interval = 0
|
||||
|
||||
# How many seconds to wait between file-parsing loops to prevent the logs from being spammed.
|
||||
min_file_parsing_loop_time = 1
|
||||
|
||||
dag_dir_list_interval = 300
|
||||
|
||||
# How often should stats be printed to the logs
|
||||
print_stats_interval = 30
|
||||
|
||||
child_process_log_directory = ~/airflow_tutorial/logs/scheduler
|
||||
|
||||
# Local task jobs periodically heartbeat to the DB. If the job has
|
||||
# not heartbeat in this many seconds, the scheduler will mark the
|
||||
# associated task instance as failed and will re-schedule the task.
|
||||
scheduler_zombie_task_threshold = 300
|
||||
|
||||
# Turn off scheduler catchup by setting this to False.
|
||||
# Default behavior is unchanged and
|
||||
# Command Line Backfills still work, but the scheduler
|
||||
# will not do scheduler catchup if this is False,
|
||||
# however it can be set on a per DAG basis in the
|
||||
# DAG definition (catchup)
|
||||
catchup_by_default = True
|
||||
|
||||
# This changes the batch size of queries in the scheduling main loop.
|
||||
# If this is too high, SQL query performance may be impacted by one
|
||||
# or more of the following:
|
||||
# - reversion to full table scan
|
||||
# - complexity of query predicate
|
||||
# - excessive locking
|
||||
#
|
||||
# Additionally, you may hit the maximum allowable query length for your db.
|
||||
#
|
||||
# Set this to 0 for no limit (not advised)
|
||||
max_tis_per_query = 512
|
||||
|
||||
# Statsd (https://github.com/etsy/statsd) integration settings
|
||||
statsd_on = False
|
||||
statsd_host = localhost
|
||||
statsd_port = 8125
|
||||
statsd_prefix = airflow
|
||||
|
||||
# The scheduler can run multiple threads in parallel to schedule dags.
|
||||
# This defines how many threads will run.
|
||||
max_threads = 2
|
||||
|
||||
authenticate = False
|
||||
|
||||
[ldap]
|
||||
# set this to ldaps://<your.ldap.server>:<port>
|
||||
uri =
|
||||
user_filter = objectClass=*
|
||||
user_name_attr = uid
|
||||
group_member_attr = memberOf
|
||||
superuser_filter =
|
||||
data_profiler_filter =
|
||||
bind_user = cn=Manager,dc=example,dc=com
|
||||
bind_password = insecure
|
||||
basedn = dc=example,dc=com
|
||||
cacert = /etc/ca/ldap_ca.crt
|
||||
search_scope = LEVEL
|
||||
|
||||
[mesos]
|
||||
# Mesos master address which MesosExecutor will connect to.
|
||||
master = localhost:5050
|
||||
|
||||
# The framework name which Airflow scheduler will register itself as on mesos
|
||||
framework_name = Airflow
|
||||
|
||||
# Number of cpu cores required for running one task instance using
|
||||
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
|
||||
# command on a mesos slave
|
||||
task_cpu = 1
|
||||
|
||||
# Memory in MB required for running one task instance using
|
||||
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
|
||||
# command on a mesos slave
|
||||
task_memory = 256
|
||||
|
||||
# Enable framework checkpointing for mesos
|
||||
# See http://mesos.apache.org/documentation/latest/slave-recovery/
|
||||
checkpoint = False
|
||||
|
||||
# Failover timeout in milliseconds.
|
||||
# When checkpointing is enabled and this option is set, Mesos waits
|
||||
# until the configured timeout for
|
||||
# the MesosExecutor framework to re-register after a failover. Mesos
|
||||
# shuts down running tasks if the
|
||||
# MesosExecutor framework fails to re-register within this timeframe.
|
||||
# failover_timeout = 604800
|
||||
|
||||
# Enable framework authentication for mesos
|
||||
# See http://mesos.apache.org/documentation/latest/configuration/
|
||||
authenticate = False
|
||||
|
||||
# Mesos credentials, if authentication is enabled
|
||||
# default_principal = admin
|
||||
# default_secret = admin
|
||||
|
||||
# Optional Docker Image to run on slave before running the command
|
||||
# This image should be accessible from mesos slave i.e mesos slave
|
||||
# should be able to pull this docker image before executing the command.
|
||||
# docker_image_slave = puckel/docker-airflow
|
||||
|
||||
[kerberos]
|
||||
ccache = /tmp/airflow_krb5_ccache
|
||||
# gets augmented with fqdn
|
||||
principal = airflow
|
||||
reinit_frequency = 3600
|
||||
kinit_path = kinit
|
||||
keytab = airflow.keytab
|
||||
|
||||
|
||||
[github_enterprise]
|
||||
api_rev = v3
|
||||
|
||||
[admin]
|
||||
# UI to hide sensitive variable fields when set to True
|
||||
hide_sensitive_variable_fields = True
|
||||
|
||||
[elasticsearch]
|
||||
elasticsearch_host =
|
||||
# we need to escape the curly braces by adding an additional curly brace
|
||||
elasticsearch_log_id_template = {dag_id}-{task_id}-{execution_date}-{try_number}
|
||||
elasticsearch_end_of_log_mark = end_of_log
|
||||
|
||||
[kubernetes]
|
||||
# The repository and tag of the Kubernetes Image for the Worker to Run
|
||||
worker_container_repository =
|
||||
worker_container_tag =
|
||||
|
||||
# If True (default), worker pods will be deleted upon termination
|
||||
delete_worker_pods = True
|
||||
|
||||
# The Kubernetes namespace where airflow workers should be created. Defaults to `default`
|
||||
namespace = default
|
||||
|
||||
# The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
|
||||
airflow_configmap =
|
||||
|
||||
# For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
|
||||
dags_volume_subpath =
|
||||
|
||||
# For DAGs mounted via a volume claim (mutually exclusive with volume claim)
|
||||
dags_volume_claim =
|
||||
|
||||
# For volume mounted logs, the worker will look in this subpath for logs
|
||||
logs_volume_subpath =
|
||||
|
||||
# A shared volume claim for the logs
|
||||
logs_volume_claim =
|
||||
|
||||
# Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
|
||||
git_repo =
|
||||
git_branch =
|
||||
git_user =
|
||||
git_password =
|
||||
git_subpath =
|
||||
|
||||
# For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
|
||||
git_sync_container_repository = gcr.io/google-containers/git-sync-amd64
|
||||
git_sync_container_tag = v2.0.5
|
||||
git_sync_init_container_name = git-sync-clone
|
||||
|
||||
# The name of the Kubernetes service account to be associated with airflow workers, if any.
|
||||
# Service accounts are required for workers that require access to secrets or cluster resources.
|
||||
# See the Kubernetes RBAC documentation for more:
|
||||
# https://kubernetes.io/docs/admin/authorization/rbac/
|
||||
worker_service_account_name =
|
||||
|
||||
# Any image pull secrets to be given to worker pods, If more than one secret is
|
||||
# required, provide a comma separated list: secret_a,secret_b
|
||||
image_pull_secrets =
|
||||
|
||||
# GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
|
||||
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
|
||||
gcp_service_account_keys =
|
||||
|
||||
# Use the service account kubernetes gives to pods to connect to kubernetes cluster.
|
||||
# It's intended for clients that expect to be running inside a pod running on kubernetes.
|
||||
# It will raise an exception if called from a process not running in a kubernetes environment.
|
||||
in_cluster = True
|
||||
|
||||
[kubernetes_secrets]
|
||||
# The scheduler mounts the following secrets into your workers as they are launched by the
|
||||
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
|
||||
# defined secrets and mount them as secret environment variables in the launched workers.
|
||||
# Secrets in this section are defined as follows
|
||||
# <environment_variable_mount> = <kubernetes_secret_object>:<kubernetes_secret_key>
|
||||
#
|
||||
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
|
||||
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
|
||||
# your workers you would follow the following format:
|
||||
# POSTGRES_PASSWORD = airflow-secret:postgres_credentials
|
||||
#
|
||||
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
|
||||
# formatting as supported by airflow normally.
|
||||
99
docker-compose-celery-executor.yml
Normal file
99
docker-compose-celery-executor.yml
Normal file
@@ -0,0 +1,99 @@
|
||||
version: "3"
|
||||
services:
|
||||
postgres:
|
||||
image: "postgres:9.6"
|
||||
container_name: "postgres"
|
||||
environment:
|
||||
- POSTGRES_USER=airflow
|
||||
- POSTGRES_PASSWORD=airflow
|
||||
- POSTGRES_DB=airflow
|
||||
ports:
|
||||
- "5432:5432"
|
||||
volumes:
|
||||
- ./data/postgres:/var/lib/postgresql/data
|
||||
webserver:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
ports:
|
||||
- "8080:8080"
|
||||
entrypoint: airflow webserver
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
|
||||
scheduler:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
- webserver
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
entrypoint: airflow scheduler
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-scheduler.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
redis:
|
||||
image: redis:5.0.5
|
||||
worker_1:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
entrypoint: airflow worker -cn worker_1
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-worker.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
worker_2:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
entrypoint: airflow worker -cn worker_2
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-worker.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
worker_3:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
entrypoint: airflow worker -cn worker_3
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-worker.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
flower:
|
||||
build: .
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
entrypoint: airflow flower
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-flower.pid ]"]
|
||||
interval: 30s
|
||||
timeout: 30s
|
||||
retries: 3
|
||||
ports:
|
||||
- "5555:5555"
|
||||
@@ -16,14 +16,11 @@ services:
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
environment:
|
||||
- LOAD_EX=n
|
||||
- EXECUTOR=Local
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
ports:
|
||||
- "8080:8080"
|
||||
command: webserver
|
||||
entrypoint: airflow webserver
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"]
|
||||
interval: 30s
|
||||
@@ -34,9 +31,10 @@ services:
|
||||
restart: always
|
||||
depends_on:
|
||||
- postgres
|
||||
- webserver
|
||||
volumes:
|
||||
- ./airflow/dags:/usr/local/airflow/dags
|
||||
command: scheduler
|
||||
entrypoint: airflow scheduler
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-scheduler.pid ]"]
|
||||
interval: 30s
|
||||
|
||||
Reference in New Issue
Block a user