Files
tpro/transcript_processing/converters/speechmatics.py

134 lines
3.8 KiB
Python

from collections import namedtuple
import json
from ..converter import TranscriptConverter
from .. import helpers
class SpeechmaticsConverter(TranscriptConverter):
name = 'speechmatics'
def __init__(self, path):
super().__init__(path)
def get_word_objects(self, json_data):
return json_data['words']
@staticmethod
def get_word_start(word_object):
return float(word_object['time'])
@staticmethod
def get_word_end(word_object):
return (SpeechmaticsConverter.get_word_start(word_object)
+ float(word_object['duration']))
@staticmethod
def get_word_confidence(word_object):
return float(word_object['confidence'])
@staticmethod
def get_word_word(word_object):
return word_object['name']
def convert_words(self, word_objects, words, tagged_words=None):
converted_words = []
punc_before = False
punc_after = False
num_words = len(words)
for i, w in enumerate(word_objects):
word_obj = self.get_word_object(w, i, tagged_words, word_objects)
if word_obj.word == '.':
continue
if word_obj.next_word:
next_word = self.get_word_word(word_obj.next_word)
if next_word == '.':
punc_after = '.'
converted_words.append({
'start': word_obj.start,
'end': word_obj.end,
'confidence': word_obj.confidence,
'word': word_obj.word,
'always_capitalized': self.check_if_always_capitalized(
word_obj.word,
i,
tagged_words),
'punc_after': punc_after,
'punc_before': punc_before,
})
punc_after = False
return converted_words
def speechmatics_aligned_text_converter(data):
data = data.readlines()[0]
class Exhausted(Exception):
pass
Word = namedtuple('Word', 'start end word')
def get_time(transcript, index):
time_index = transcript.find('time=', index)
if time_index == -1:
raise Exhausted
close_index = transcript.find('>', time_index)
return float(transcript[time_index + 5: close_index]), close_index
def find_next_word(transcript, start_index):
start, end_of_start_index = get_time(transcript, start_index)
word_start_index = end_of_start_index + 1
word_end_index = transcript.find('<', word_start_index)
word = transcript[word_start_index: word_end_index]
end, close_index = get_time(transcript, word_end_index)
return Word(start, end, word), close_index
words = []
next_index = 0
word = None
while True:
try:
word, next_index = find_next_word(data, next_index)
except Exhausted:
break
else:
words.append(word)
tagged_words = helpers.tag_words([w.word for w in words])
converted_words = []
for i, word in enumerate(words):
is_proper_noun = tagged_words[i][1] in helpers.PROPER_NOUN_TAGS
punc_before = helpers.get_punc_before(word.word)
punc_after = helpers.get_punc_after(word.word)
the_word = word.word
if punc_before or punc_after:
for p in helpers.PUNCTUATION:
the_word = the_word.replace(p, '')
converted_words.append({
'start': word.start,
'end': word.end,
'confidence': 1,
'word': the_word,
'always_capitalized': self.check_if_always_capitalized(
word.word,
i,
tagged_words),
'index': i,
'punc_before': punc_before,
'punc_after': punc_after,
})
return converted_words