implemented leaky bucket, changed ip to identifier, added a bunch of documentation so the repo can serve as much of a journal entry as a collection of code. added a README in that effort too.
This commit is contained in:
5
my_limiter/README.md
Normal file
5
my_limiter/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
This repository contains my implementations and explorations of rate limiting, drawn initially from the book _System Design Interview_.
|
||||
|
||||
I'm embarking on this in order to get a great software engineering (probably back-end) job, and at the moment I have Happy Scribe in mind since I have an interview with them on August 24th, directly after our family vacation in Greece.
|
||||
|
||||
Over a year ago (early 2022) I did a job search, and some of the interview processes ended right before or after the system design phase, so it's obviously something I need in my portfolio to truly be considered for senior dev roles. While I'd love to get a job as a junior or mid-level, my salary requirements and age (45) push me towards senior. That, and maybe the fact that I'm a decent programmer by now.
|
||||
@@ -1,28 +1,76 @@
|
||||
"""
|
||||
These are implementations of different (in-application) rate limiting algorithms.
|
||||
|
||||
`identifier` is used as the first (usually only) argument for each implementation
|
||||
because it might refer to IP address, a session ID, or perhaps an API key or token.
|
||||
"""
|
||||
import datetime as dt
|
||||
|
||||
import redis
|
||||
|
||||
|
||||
TOKEN_BUCKET = {}
|
||||
TIME_INTERVAL_SECONDS = 15
|
||||
r = redis.Redis()
|
||||
|
||||
|
||||
MAX_CAPACITY = 8
|
||||
|
||||
|
||||
class TooManyRequests(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def token_bucket(ip: str) -> str:
|
||||
class EntryDoesntExist(Exception):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
def leaking_bucket(identifier: str, data: str) -> None:
|
||||
"""
|
||||
When a request arrives, the system checks if the queue for this particular
|
||||
`identifier` is full. If it is not full, the request is added to the queue.
|
||||
Otherwise, the request is dropped.
|
||||
|
||||
Requests are pulled from the queue and processed at regular intervals.
|
||||
(a separate process implemented elsewhere)
|
||||
TODO: implement that other process!
|
||||
- [ ] done
|
||||
"""
|
||||
STORE_NAME_PREFIX = "leaking_bucket:queue:tasks"
|
||||
store_name = f"{STORE_NAME_PREFIX}:{identifier}"
|
||||
|
||||
if r.llen(store_name) == MAX_CAPACITY:
|
||||
raise TooManyRequests
|
||||
r.lpush(store_name, data)
|
||||
|
||||
|
||||
TOKEN_BUCKET = {}
|
||||
|
||||
|
||||
def get_entry_from_token_bucket(identifier: str) -> dict | None:
|
||||
"""
|
||||
This is implemented independently in order to decouple it from its caller.
|
||||
Here it is initially implemented in-memory, but for scalability we'd
|
||||
want to use something more long-lived.
|
||||
"""
|
||||
return TOKEN_BUCKET.get(identifier)
|
||||
|
||||
|
||||
def token_bucket(identifier: str) -> str:
|
||||
"""
|
||||
Tokens are put in the bucket at preset rates periodically.
|
||||
Once the bucket is full, no more tokens are added.
|
||||
The refiller puts NUM_TOKENS_TO_REFILL tokens into the bucket every minute.
|
||||
"""
|
||||
REFILL_EVERY_SECONDS = TIME_INTERVAL_SECONDS
|
||||
NUM_TOKENS_TO_REFILL = 4
|
||||
MAX_CAPACITY = 8
|
||||
|
||||
entry = TOKEN_BUCKET.get(ip)
|
||||
To be explicit, there is a token bucket for every `identifier`,
|
||||
aka every user/IP
|
||||
"""
|
||||
REFILL_EVERY_SECONDS = 15
|
||||
NUM_TOKENS_TO_REFILL = 4
|
||||
|
||||
entry = get_entry_from_token_bucket(identifier)
|
||||
|
||||
if entry is None:
|
||||
TOKEN_BUCKET[ip] = {'tokens': MAX_CAPACITY, 'last_refilled': dt.datetime.now().timestamp()}
|
||||
TOKEN_BUCKET[identifier] = {'tokens': MAX_CAPACITY, 'last_refilled': dt.datetime.now().timestamp()}
|
||||
else:
|
||||
last_refilled = entry['last_refilled']
|
||||
now = dt.datetime.now().timestamp()
|
||||
@@ -31,8 +79,8 @@ def token_bucket(ip: str) -> str:
|
||||
entry['last_refilled'] = dt.datetime.now().timestamp()
|
||||
entry['tokens'] = min(entry['tokens'] + num_tokens_to_refill, MAX_CAPACITY)
|
||||
|
||||
left = TOKEN_BUCKET[ip]['tokens']
|
||||
left = TOKEN_BUCKET[identifier]['tokens']
|
||||
if left == 0:
|
||||
raise TooManyRequests
|
||||
|
||||
TOKEN_BUCKET[ip]['tokens'] -= 1
|
||||
TOKEN_BUCKET[identifier]['tokens'] -= 1
|
||||
@@ -1,7 +1,10 @@
|
||||
"""
|
||||
TODO: implement token bucket
|
||||
- [ ] in-app
|
||||
- [x] in-memory
|
||||
- [ ] redis
|
||||
TODO: implement leaky bucket
|
||||
- in-app
|
||||
- [x] in-memory
|
||||
- [ ] redis
|
||||
- [ ] redis cluster
|
||||
- [ ] Flask middleware - https://flask.palletsprojects.com/en/2.1.x/quickstart/#hooking-in-wsgi-middleware
|
||||
@@ -10,10 +13,13 @@ TODO: implement leaky bucket
|
||||
- [ ] AWS API Gateway
|
||||
- [ ] HAProxy Stick Tables - https://www.haproxy.com/blog/introduction-to-haproxy-stick-tables
|
||||
- [ ] Cloudflare (Spectrum?)
|
||||
TODO: implement expiring tokens
|
||||
TODO: implement fixed window counter
|
||||
TODO: implement sliding window log
|
||||
TODO: implement sliding window counter
|
||||
TODO: use session IDs instead of IP address
|
||||
TODO: use session IDs or API keys instead of IP address
|
||||
TODO: set headers appropriately in each case: https://www.ietf.org/archive/id/draft-polli-ratelimit-headers-02.html#name-ratelimit-headers-currently
|
||||
TODO: implement different rate limiting for each endpoint, using a `cost` variable for a given task
|
||||
"""
|
||||
import flask as f
|
||||
|
||||
|
||||
Reference in New Issue
Block a user