1163 lines
154 KiB
Plaintext
1163 lines
154 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Rent or Buy?\n",
|
|
"\n",
|
|
"If you have a small pile of money that you are thinking of dropping on the downpayment of a house, should you? This document runs a small stochastic simulation that will help you decide whether it makes sense to buy a house or to rent. \n",
|
|
"\n",
|
|
"Conventional wisdom says that you will save money in the long term if you buy a house (the thinking being that you don't \"waste\" money on rent, and that you \"build equity\" in the value of the house). However, as this notebook will demonstrate, things are a little more complicated.\n",
|
|
"\n",
|
|
"The two cases this notebook contrasts are:\n",
|
|
"\n",
|
|
"* Putting a large lump sum down on the downpaymnet of a house, and then paying monthly payments to pay off the remainder of your debt. Once the house is paid off, those monthly payments will instead be invested in an index fund.\n",
|
|
"* Putting all the money that you would have put in a downpayment in an index fund, and then spending what you would have spent on monthly mortage payments on rent. \n",
|
|
"\n",
|
|
"Perhaps surprisngly, you will find that for many parameters, there is very little difference between the two scenarious, for the following simple reason:\n",
|
|
"\n",
|
|
"**Yes, the value of your house is going to go up. But the stock market is going to go up a lot faster**. \n",
|
|
"\n",
|
|
"This notebook allows you to play with the following parameters interactively:\n",
|
|
"\n",
|
|
"* **Starting Sum** This is the amount you have saved up. In the \"buying\" scenario, you put this all in your downpayment. In the \"renting\" scenario, you put this all in the stock market in an index fund. \n",
|
|
"* **Cost of the house** \n",
|
|
"* **Tax rate on the house**\n",
|
|
"* **Interest rate** On your mortage\n",
|
|
"* **Duration** Of your mortgage \n",
|
|
"* **Fraction of monthly payment you are willing to pay as rent** Assuming you are renting\n",
|
|
"* **Rent hike** Anticipated annual rent increase (percentage)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6b9df1b3c69943fc8cea402cbe006b8e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HTML(value='<h3>Initial savings</h3>')"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "153507304345499da8be3f63f000f5d3",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HTML(value=\"<p>This amount is the what you have saved up, that you're willing to put down as downpayment for a…"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dd5977213799420d94deb10f9438051c",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"FloatText(value=100000.0, description='Starting $', layout=Layout(height='80px', width='20%'), step=10000.0)"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "2681ce938c5141f685584839f71fda17",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HTML(value='<h3>Buying</h3>')"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "f18323dc3a77450da5a62d938f333dfa",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"VBox(children=(HBox(children=(IntText(value=600000, description='Cost ($)', step=10000), FloatSlider(value=1.0…"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "25f6e0346d9a44f19d2a4fce4c8ccf68",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HTML(value='<h3>Renting and investing</h3>')"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "6caca31c5fac48e3bde49508c0123d0e",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"HBox(children=(IntSlider(value=50, description='Rent frac (%)', step=5), IntSlider(value=1, description='Rent …"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"999.6166666666666\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"from ipywidgets import *\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import time\n",
|
|
"%matplotlib notebook\n",
|
|
"import math\n",
|
|
"import random\n",
|
|
"\n",
|
|
"time = np.linspace(2019, 2060,30)\n",
|
|
"\n",
|
|
"\n",
|
|
"# annual return of stock market\n",
|
|
"historical_yearly_return = [18.5,5.2,16.8,31.5,-3.1,\n",
|
|
" 30.5,7.6,10.1,1.3,37.6,\n",
|
|
" 23.1,33.4,28.6,21.0,-9.1,\n",
|
|
" -11.9,-22.1,28.7,10.9,4.9,\n",
|
|
" 15.8,5.5,-37.0,26.5,15.1,2.1,16.0,32.4,13.7,1.4,11.9];\n",
|
|
"\n",
|
|
"\n",
|
|
"house_appreciation = [5.5, 3.52, 5.3, 3.9]\n",
|
|
"\n",
|
|
"# income and initial condition parameters\n",
|
|
"starting_sum = widgets.FloatText(value=100000,min = 0, step = 10000, description = \"Starting $\",\n",
|
|
" layout = current_income.layout)\n",
|
|
"\n",
|
|
"\n",
|
|
"display(widgets.HTML(value=\"<h3>Initial savings</h3>\"))\n",
|
|
"display(widgets.HTML(value=\"<p>This amount is the what you have saved up, that you're willing to put down as downpayment for a house</p>\"))\n",
|
|
"display(starting_sum)\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"# buying \n",
|
|
"house_cost = widgets.IntText(value = 600000, min = 400000, step = 10000, description = \"Cost ($)\")\n",
|
|
"tax_rate = widgets.FloatSlider(value = 1, min = 1, step = .1,max=4, description = \"Tax (%)\")\n",
|
|
"interest_rate = widgets.FloatSlider(value = 3, min = 1, step = .5, description = \"Interest (%)\")\n",
|
|
"duration = widgets.IntSlider(value = 20, min = 5, max=30, step= 1, description = \"Duration (y)\")\n",
|
|
"\n",
|
|
"display(widgets.HTML(value=\"<h3>Buying</h3>\"))\n",
|
|
"box1 = widgets.HBox([house_cost, tax_rate])\n",
|
|
"box2 = widgets.HBox([interest_rate, duration])\n",
|
|
"display(widgets.VBox([box1,box2]))\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"# assuming renting and investing\n",
|
|
"display(widgets.HTML(value=\"<h3>Renting and investing</h3>\"))\n",
|
|
"\n",
|
|
"\n",
|
|
"rent_fraction = widgets.IntSlider(value = 50, min = 0, max = 100, step = 5, description = \"Rent frac (%)\")\n",
|
|
"rent_growth = widgets.IntSlider(value = 1, min = 1, max = 30, step = 1, description = \"Rent hike (%)\")\n",
|
|
"rent_box = widgets.HBox([rent_fraction, rent_growth])\n",
|
|
"\n",
|
|
"\n",
|
|
"display(rent_box)\n",
|
|
"\n",
|
|
"\n",
|
|
"fig = plt.figure(figsize=(10, 7),num=None)\n",
|
|
"\n",
|
|
"# first plot shows mean asset value in the two cases. \n",
|
|
"ax_value = fig.add_subplot(2, 1, 1)\n",
|
|
"ax_value.set_ylabel('Mean Asset Value ($)')\n",
|
|
"rent_asset_mean, = ax_value.plot(time,time*0+current_income.value,'r-',linewidth=3)\n",
|
|
"\n",
|
|
"\n",
|
|
"buy_asset_mean, = ax_value.plot(time,time*0+current_income.value,'k-',linewidth=3)\n",
|
|
"\n",
|
|
"\n",
|
|
"# second plot shows anticipated housing costs for both renting and buying\n",
|
|
"# this does not include utilies, etc. which are common to both scenarios\n",
|
|
"ax_costs = fig.add_subplot(2,1,2)\n",
|
|
"ax_costs.set_xlabel('Year')\n",
|
|
"ax_costs.set_ylabel('Housing cost ($)')\n",
|
|
"\n",
|
|
"rent_cost, = ax_costs.plot(time, time*0 + 1, 'r-')\n",
|
|
"buy_cost, = ax_costs.plot(time, time*0 + 1, 'k-')\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"fig.canvas.draw()\n",
|
|
"fig.canvas.draw()\n",
|
|
"fig.canvas.flush_events()\n",
|
|
"\n",
|
|
"\n",
|
|
"def income(growth_rate,starting_income):\n",
|
|
" predicted_income = 0*time + starting_income\n",
|
|
" for i in range(time.size):\n",
|
|
" predicted_income[i] = starting_income*math.pow(1 + growth_rate, i)\n",
|
|
" return predicted_income\n",
|
|
" \n",
|
|
"\n",
|
|
" \n",
|
|
"def estimateStockGrowth(annual_contrib,initial_contrib):\n",
|
|
" # how many samples to randomize across? \n",
|
|
" N = 100\n",
|
|
" \n",
|
|
" ensemble_returns = np.zeros((N,time.size))\n",
|
|
" \n",
|
|
" # initialize\n",
|
|
" ensemble_returns[:,0] = initial_contrib\n",
|
|
" \n",
|
|
" \n",
|
|
" for ti in np.arange(1,time.size):\n",
|
|
" for i in np.arange(0,N):\n",
|
|
" # pick a random yield rate\n",
|
|
" r = random.choice(historical_yearly_return)/100\n",
|
|
" ensemble_returns[i,ti] = ensemble_returns[i,ti-1]*(1+r) + annual_contrib[ti]\n",
|
|
" \n",
|
|
" return ensemble_returns\n",
|
|
" \n",
|
|
"\n",
|
|
"def updateAll(change):\n",
|
|
" # compute annual payments assuming buying a house\n",
|
|
" r = interest_rate.value/100\n",
|
|
" n = duration.value\n",
|
|
" annual_payment = (house_cost.value - starting_sum.value)*(r)*math.pow((1+r),n)/(math.pow(1+r,n) - 1)\n",
|
|
" temp = 0*time + (tax_rate.value/100)*house_cost.value\n",
|
|
" for i in range(0,n):\n",
|
|
" temp[i] = annual_payment\n",
|
|
" \n",
|
|
" # plot monthly housing cost\n",
|
|
" buy_cost.set_ydata(temp/12)\n",
|
|
" to_invest = temp[0] - temp\n",
|
|
" ax_costs.set_ylim([0, annual_payment*.15])\n",
|
|
" \n",
|
|
" # now compute how much rent we can afford\n",
|
|
" temp = 0*time + annual_payment/12*rent_fraction.value/100\n",
|
|
" \n",
|
|
" for i in range(1,time.size):\n",
|
|
" temp[i] = temp[i-1]*(1+rent_growth.value/100)\n",
|
|
" \n",
|
|
" \n",
|
|
" rent_cost.set_ydata(temp)\n",
|
|
" \n",
|
|
" # so now calculate the amount we expect to be able to invest if we rent\n",
|
|
" rent_invest_contrib = annual_payment/12 - temp\n",
|
|
" \n",
|
|
" ensemble_returns = estimateStockGrowth(rent_invest_contrib,starting_sum.value)\n",
|
|
" mean_stock = np.mean(ensemble_returns,axis=0)\n",
|
|
" std_stock = np.std(ensemble_returns,axis=0)\n",
|
|
" \n",
|
|
" \n",
|
|
" rent_asset_mean.set_ydata(mean_stock)\n",
|
|
" ax_value.collections.clear()\n",
|
|
" shade = ax_value.fill_between(time, mean_stock-std_stock, mean_stock + std_stock,color=[1,0.8,0.8],alpha=.2)\n",
|
|
" \n",
|
|
" ax_value.set_ylim([starting_sum.value, max(mean_stock+std_stock)])\n",
|
|
" \n",
|
|
" ax_value.set_yscale('log')\n",
|
|
" \n",
|
|
" \n",
|
|
" # now compute house appreciation over time\n",
|
|
" house_value = 0*time + house_cost.value\n",
|
|
" for i in range(1,time.size):\n",
|
|
" r = random.choice(house_appreciation)/100\n",
|
|
" house_value[i] = house_value[i-1]*(1+r)\n",
|
|
" \n",
|
|
" \n",
|
|
" # after the house is paid off, annual payments are diverted to investments\n",
|
|
" ensemble_returns = estimateStockGrowth(to_invest,0)\n",
|
|
" mean_stock = np.mean(ensemble_returns,axis=0) + house_value\n",
|
|
" std_stock = np.std(ensemble_returns,axis=0)\n",
|
|
" \n",
|
|
"\n",
|
|
" buy_asset_mean.set_ydata(mean_stock)\n",
|
|
"\n",
|
|
" shade = ax_value.fill_between(time, mean_stock-std_stock, mean_stock + std_stock,color=[.8,0.8,0.8],alpha=.2)\n",
|
|
" \n",
|
|
" \n",
|
|
" fig.canvas.draw()\n",
|
|
" fig.canvas.flush_events()\n",
|
|
" \n",
|
|
"\n",
|
|
"\n",
|
|
" \n",
|
|
" \n",
|
|
" \n",
|
|
"# listeners\n",
|
|
"house_cost.observe(updateAll)\n",
|
|
"tax_rate.observe(updateAll)\n",
|
|
"interest_rate.observe(updateAll)\n",
|
|
"duration.observe(updateAll)\n",
|
|
"rent_fraction.observe(updateAll)\n",
|
|
"rent_growth.observe(updateAll)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|